
1

FARADAY’S LAW AND 
DISPLACEMENT CURRENT

CHAPTER 9

9.1 FARADAY’S LAW
9.1.1  TIME VARYING FIELD – STATIONARY CIRCUIT

9.1.2  MOVING CIRCUIT – STATIC FIELD 

9.1.3  TIME VARYING FIELD - MOVING CIRCUIT

9.2 DISPLACEMENT CURRENT

9.3 LOSSY DIELECTRICS

9.4 BOUNDARY CONDITIONS



9.0 FARADAY’S LAW AND DISPLACEMENT 
CURRENT

Two topics will be discussed :

(i) Faraday’s Law – about the existence of electromotive force 
(emf) in the magnetic field

(ii) Displacement current – that exists due to time varying field

That will cause the modification of Maxwell’s equations (in point form 
- static case) studied previously and hence becomes a  concept basic
to the understanding of all fields in electrical engineering.



9.1 FARADAY’S LAW

Michael Faraday – proved that if the current can produce magnetic 
field, the reverse also will be true.

Proven only after 10 years in 1831.

The magnetic field can produce current in a loop, only if the 
magnetic flux linkage the surface of the loop is time varying. 

Faraday’s Experiment :
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• Current produced magnetic field and the 
magnetic flux is given by :

 ∫
s

m sdB •=ψ (1)

• No movement in galvanometer means that the flux is constant.

• Once the battery is put off – there is a movement in the 
galvanometer needle.

• The same thing will happen once the battery is put on - but this 
time the movement of the needle is in the opposite direction.

Conclusions : The current was induced in the loop

- when the flux varies

- once the battery is connected

- if the loop is moving or rotating



Induced current will induced electromotive voltage or induced emf 
Vemf given by :
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where   N = number of turns
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Equation (2) is called Faraday’s Law

Lenz’s Law summarizes the –ve sign is that  :  The induced 
voltage established opposes the the flux produced by the loop.



In general, Faraday’s law manifests that the Vemf can be established
in these 3 conditions :

• Time varying field – stationary circuit (Transformer emf)

• Moving circuit – static field (Motional emf)

• Time varying field - Moving circuit (both transformer emf 
and motional emf exist)



9.1.1  TIME VARYING FIELD – STATIONARY CIRCUIT 
(TRANSFORMER EMF)
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Vemf =  the potential difference at 
terminal 1 and 2.
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From electric field : 
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Using Stoke’s theorem :
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Hence Maxwell’s equation 
becomes :
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9.1.2  MOVING CIRCUIT – STATIC FIELD 
(MOTIONAL EMF)
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Diagram shows a bar moving with a 
velocity      in a static field       .Bu

Force :
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Fleming’s Right hand rule

Thumb – Motion 

1st finger – Field

Second finger - Current



9.1.3  TIME VARYING FIELD - MOVING CIRCUIT

Both transformer emf and motional emf exist
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Ex. 9.1 : A coducting bar moving on the rail is shown in the diagram. 
Find an induced voltage on the bar if :
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26 /ˆ10cos4= mmWbztB

Solution :

(i) Transformer case :
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According to Lenz’s law when  increases point P will be at the higher 
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(ii) Motional case :
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(iii) Both transformer and motional case :
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9.2 DISPLACEMENT CURRENT
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Hence : Therefore from Faraday’s 
law and the concept of 
displacement current we 
can conclude that both 
the magnetic and electric 
fields are interrelated. 



t
BE
∂
∂-∇ =× sd

t
BdE •=•∫ ∫∂
∂-l

t
DJH
∂
∂∇ +=× sd

t
DIdH •+=•∫ ∫∂
∂

l

vD ρ=•∇ dvsdD
v

v
s

∫∫ ρ=•

0∇ =• B 0∫ =•
s

sdB

Differential 
Form Integral Form Label

Faraday’s Law

Ampere’s Circuital 
Law

Gauss’S Law for 
Electric Field

Gauss’s Law for 
Magnetic Field

Maxwell’s Equations

An integral form of Maxwell’s equation can be found either by using 
Divergence Theorem or Stoke Theorem. All electromagnetic (EM) waves 
must conform or obey all the four Maxwell’s equations.



Ex.9.2: A parallel plate capacitor having a plate area of 5 cm2 and where the 
plates are separated by a distance of 3 mm is connected to a supply voltage, 
50 sin 103 t Volt. Calculate the displacement current if the dielectric permittivity
between the plate is               .02εε =
Solution :
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This example is to show the use of Maxwell’s equation and the inter 
relation of electric field and magnetic field.
Ex.9.3: Given a magnetic medium with characteristics                   
has                                                     . Find  and       .
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9.3 LOSSY DIELECTRICS
Main function of dielectric material is to be used as an insulator.

For a perfect dielectric : 0=σ
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Hence Maxwell’s equation :
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= loss tangent

Loss tangent is the ratio of the magnitude of the 
conduction current density to the magnitude of 
the displacement current density
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A lossless capacitor has a loss tangent of zero.

For lossy capacitor, an equivalent circuit can be replaced by its 
equivalent resistance in parallel with a perfect capacitor as 
shown in the diagram :
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Ex.9.4: Find the average power loss per unit volume for a capacitor 
having the following properties; dielectric constant 2.5 loss tangent 
0.0005 for an applied electric field intensity of 1 kV/m at frequency 
500 MHz.

Solution :
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9.4 BOUNDARY CONDITIONS
Boundary conditions for time varying field are the same as 
boundary conditions in electrostatics and magnetostatics fields.

E HTangential components for      and       :
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Hence :


